本问题对应的 leetcode 原文链接:剑指 Offer 07. 重建二叉树
问题描述
输入某二叉树的前序遍历和中序遍历的结果,请构建该二叉树并返回其根节点。
假设输入的前序遍历和中序遍历的结果中都不含重复的数字。
示例 1:
Input: preorder = [3,9,20,15,7], inorder = [9,3,15,20,7]
Output: [3,9,20,null,null,15,7]
示例 2:
Input: preorder = [-1], inorder = [-1]
Output: [-1]
限制:
0 <= 节点个数 <= 5000
解题思路
视频讲解直达: 本题视频讲解
代码实现
Map< Integer, Integer > map = new HashMap();
public TreeNode buildTree(int[] preorder, int[] inorder) {
if(preorder == null || preorder.length <= 0){
return null;
}
// 简历中序遍历数组的映射(就是为了快速求出某个元素的下标)
for(int i = 0; i < inorder.length; i++) {
map.put(inorder[i], i);
}
TreeNode root = f(preorder, 0, preorder.length - 1, inorder, 0, inorder.length - 1);
return root;
}
TreeNode f(int[] preorder, int l1, int r1, int[] inorder, int l2, int r2) {
// 前序遍历或者中序遍历为空时,表示这棵树不存在,直接返回 null
if( l1 > r1 || l2 > r2){
return null;
}
// 根节点
TreeNode root = new TreeNode(preorder[l1]);
// 根节点在中序遍历中的下标
int i = map.get(preorder[l1]);
// 递归求解
root.left = f(preorder, l1 + 1, l1 + (i - l2), inorder, l2, i - 1);
root.right = f(preorder, l1 + (i - l2) + 1, r1, inorder, i + 1, r2);
return root;
}
- 时间复杂度 O(N) : 其中 NN 为树的节点数量。初始化 HashMap 需遍历 inorder ,占用 O(N) 。递归共建立 NN 个节点,每层递归中的节点建立、搜索操作占用 O(1) ,因此使用 O(N) 时间。
- 空间复杂度 O(N) : HashMap 使用 O(N) 额外空间;最差情况下(输入二叉树为链表时),递归深度达到 N ,占用 O(N)的栈帧空间;因此总共使用 O(N) 空间。
Python
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution(object):
def buildTree(self, preorder, inorder):
"""
:type preorder: List[int]
:type inorder: List[int]
:rtype: TreeNode
"""
map = {}
for i in range(len(inorder)):
map[inorder[i]] = i
def f(preorder, l1, r1, inorder, l2, r2):
if l1 > r1 or l2 > r2:
return None
root = TreeNode(preorder[l1])
i = map[preorder[l1]]
root.left = f(preorder, l1 + 1, l1 + i - l2, inorder, l2, i - 1)
root.right = f(preorder, l1 + i - l2 + 1, r1, inorder, i + 1, r2)
return root
return f(preorder, 0, len(preorder) - 1, inorder, 0, len(inorder) - 1)
C++
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
unordered_map<int, int> map;
for (int i = 0; i < inorder.size(); i++) {
map[inorder[i]] = i;
}
function<TreeNode*(int, int, int, int)> f = [&](int l1, int r1, int l2, int r2) -> TreeNode* {
if (l1 > r1 || l2 > r2) {
return nullptr;
}
TreeNode* root = new TreeNode(preorder[l1]);
int i = map[preorder[l1]];
root->left = f(l1 + 1, l1 + i - l2, l2, i - 1);
root->right = f(l1 + i - l2 + 1, r1, i + 1, r2);
return root;
};
return f(0, preorder.size() - 1, 0, inorder.size() - 1);
}
};
Go
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func buildTree(preorder []int, inorder []int) *TreeNode {
m := make(map[int]int)
for i, v := range inorder {
m[v] = i
}
var f func(int, int, int, int) *TreeNode
f = func(l1, r1, l2, r2 int) *TreeNode {
if l1 > r1 || l2 > r2 {
return nil
}
root := &TreeNode{preorder[l1], nil, nil}
i := m[preorder[l1]]
root.Left = f(l1+1, l1+i-l2, l2, i-1)
root.Right = f(l1+i-l2+1, r1, i+1, r2)
return root
}
return f(0, len(preorder)-1, 0, len(inorder)-1)
}
JS
/**
* Definition for a binary tree node.
* function TreeNode(val) {
* this.val = val;
* this.left = this.right = null;
* }
*/
/**
* @param {number[]} preorder
* @param {number[]} inorder
* @return {TreeNode}
*/
var buildTree = function(preorder, inorder) {
const map = new Map();
if(preorder == null || preorder.length <= 0){
return null;
}
// 建立中序遍历数组的映射(就是为了快速求出某个元素的下标)
for(let i=0; i<inorder.length; i++) {
map.set(inorder[i], i);
}
let root = f(preorder, 0, preorder.length - 1, inorder, 0, inorder.length - 1, map);
return root;
};
function f(preorder, l1, r1, inorder, l2, r2, map) {
// 前序遍历或者中序遍历为空时,表示这棵树不存在,直接返回 null
if( l1 > r1 || l2 > r2){
return null;
}
// 根节点
let root = new TreeNode(preorder[l1]);
// 根节点在中序遍历中的下标
let i = map.get(preorder[l1]);
// 递归求解
root.left = f(preorder, l1 + 1, l1 + (i - l2), inorder, l2, i - 1, map);
root.right = f(preorder, l1 + (i - l2) + 1, r1, inorder, i + 1, r2, map);
return root;
}
评论(3)
JS – 感觉这个方式更好理解
function TreeNode(val) {
this.val = val;
this.left = this.right = null;
}
function buildTree(preorder, inorder) {
if (!preorder.length || !inorder.length) {
return null;
}
const root = new TreeNode(preorder[0]);
const mid = inorder.indexOf(preorder[0]);
root.left = buildTree(preorder.slice(1, mid + 1), inorder.slice(0, mid));
root.right = buildTree(preorder.slice(mid + 1), inorder.slice(mid + 1));
return root;
}
感觉CPP不易懂,